왜 Singular Value Decomposition?


어떤 행렬도 SVD가 될까?


Key facts

Untitled

$A\begin{bmatrix} |& &|\\ v_1&\cdot\cdot\cdot&v_n\\ |& &|\\ \end{bmatrix}{n\times n} = \begin{bmatrix} |& &|\\ u_1&\cdot\cdot\cdot&u_m\\ |& &|\\ \end{bmatrix}{m\times m} \begin{bmatrix} \sigma_1& &&| &\\ &\cdot\cdot&&|&0\\ &&\sigma_r& |&\\ -&-&-&-&-\\ & 0 &&|&0\\ \end{bmatrix}_{m\times n} \;\;\;\; \small{\sigma_1 \ge...\ge\sigma_r}$

$A\begin{bmatrix} |& &|\\ v_1&\cdot\cdot\cdot&v_r\\ |& &|\\ \end{bmatrix}{n\times r} = \begin{bmatrix} |& &|\\ u_1&\cdot\cdot\cdot&u_r\\ |& &|\\ \end{bmatrix}{m\times r} \begin{bmatrix} \sigma_1& &\\ &\cdot\cdot\cdot&\\ & &\sigma_r\\ \end{bmatrix}_{r\times r} \space\;\;\; \small{\sigma_1 \ge...\ge\sigma_r}$